Searching for the tau neutrino magnetic moment

Reinhard Schwienhorst University of Minnesota

E872 Group Meeting, Pittsburgh, 3/19/99

Outline

- Characteristics of a magnetic moment interaction
- Search methods
- High efficiency search
- Conclusions

Characteristics of a magnetic moment interaction

- Neutrino-electron interaction
 - $v + e \rightarrow v + e$
 - no hadronic activity
- cross section decreases as 1/T
 - T is the electron energy
- search for single, low-energy electrons

Method 1: Search for special events

- Single track exiting the emulsion, very straight forward
 - an electron that has not showered
- Advantage:
 - clean signal
- Disadvantage:
 - small efficiency
 - the emulsion cannot help

Method 2: high efficiency search

- Find all events with electron-signature
 - use the MC to define event-shape parameters and reduce background
- Advantage:
 - high efficiency
 - If there is only one event, we will not miss it.
- Disadvantage:
 - signal and background are not easily separated

Method 3: other searches

- Take advantage of $\sigma \sim 1/T$, look for keV electrons:
 - excessive noise in the emulsion
 - very black
 - a lot of short track stubs
 - excessive noise in the SFT
 - beam-on pedestal different from beam-off pedestal
 - unexplainable beam-on pulseheight in the EMCAL (only in the center)
- not trigger dependent

Method of choice: 2; high efficiency search

- Spectrometer analysis:
 - Reduce candidate event sample
 - eliminate v_u CC interactions \rightarrow easy, muon track
 - removes 90% of the ν_{μ} CC interactions
 - eliminate v_e CC interactions \rightarrow a lot of EM energy
 - removes 90% of the v_e CC interactions
 - eliminate NC interactions → only hadronic activity
 - removes (90)% of the NC interactions
 - eliminate v_{τ} CC interactions \rightarrow each of the above
 - prepare all candidates for emulsion scanning
 - v_{τ} CC \rightarrow hadrons and NC enriched

High Efficiency Search

- Emulsion analysis
 - magnetic moment interactions will not be found
 - CS scan requires track of >50mrad
 - net scan requires at least 3 tracks from the vertex
 - if a candidate event is scanned and the vertex is not found, then
 - Why? Is an important question
 - can we determine if one of the tracks in the event is not an electron?

Conclusions

- A high-efficiency search for the tau neutrino magnetic moment requires both spectrometer and emulsion information
- I will produce a list of events with prediction and send it to Nagoya
 - at first only period 4
 - later for all periods
- I will obtain a limit for the magnetic moment from all three methods